ITR.temperature_score
Classes
A scenario defines which scenario should be run. |
|
An engagement type defines how the companies will be engaged. |
|
A scenario defines the action the portfolio holder will take to improve its temperature score. |
|
This class provides a temperature score based on the climate goals. |
Module Contents
- class ITR.temperature_score.ScenarioType(*args, **kwds)
Bases:
enum.EnumA scenario defines which scenario should be run.
- TARGETS = 1
- APPROVED_TARGETS = 2
- HIGHEST_CONTRIBUTORS = 3
- HIGHEST_CONTRIBUTORS_APPROVED = 4
- static from_int(value) ScenarioType | None
- class ITR.temperature_score.EngagementType(*args, **kwds)
Bases:
enum.EnumAn engagement type defines how the companies will be engaged.
- SET_TARGETS = 1
- SET_SBTI_TARGETS = 2
- static from_int(value) EngagementType
Convert an integer to an engagement type.
- Parameters:
value – The value to convert
- Returns:
- static from_string(value: str | None) EngagementType
Convert a string to an engagement type.
- Parameters:
value – The value to convert
- Returns:
- class ITR.temperature_score.Scenario
A scenario defines the action the portfolio holder will take to improve its temperature score.
- scenario_type: ScenarioType | None
- engagement_type: EngagementType
- get_score_cap() float
- get_default_score(default_score: float) float
- static from_dict(scenario_values: dict) Scenario | None
Convert a dictionary to a scenario. The dictionary should have the following keys:
number: The scenario type as an integer
engagement_type: The engagement type as a string
- Parameters:
scenario_values – The dictionary to convert
- Returns:
A scenario object matching the input values or None, if no scenario could be matched
- static from_interface(scenario_values: ITR.interfaces.ScenarioInterface | None) Scenario | None
Convert a scenario interface to a scenario.
- Parameters:
scenario_values – The interface model instance to convert
- Returns:
A scenario object matching the input values or None, if no scenario could be matched
- class ITR.temperature_score.TemperatureScore(time_frames: List[ITR.interfaces.ETimeFrames], scopes: List[ITR.interfaces.EScope], default_score: float = TemperatureScoreConfig.DEFAULT_SCORE, model: int = TemperatureScoreConfig.MODEL_NUMBER, scenario: Scenario | None = None, aggregation_method: ITR.portfolio_aggregation.PortfolioAggregationMethod = PortfolioAggregationMethod.WATS, grouping: List | None = None, config: Type[ITR.configs.TemperatureScoreConfig] = TemperatureScoreConfig)
Bases:
ITR.portfolio_aggregation.PortfolioAggregationThis class provides a temperature score based on the climate goals.
- Parameters:
default_score – The temp score if a company is not found
model – The regression model to use
config – A class defining the constants that are used throughout this class. This parameter is only required if you’d like to overwrite a constant. This can be done by extending the TemperatureScoreConfig class and overwriting one of the parameters.
- model = 1
- c: Type[ITR.configs.TemperatureScoreConfig]
- default_score = 3.4
- time_frames
- scopes
- aggregation_method: ITR.portfolio_aggregation.PortfolioAggregationMethod
- grouping: list = []
- regression_model = None
- s3_calculation_test = False
- get_target_mapping(target: pandas.Series) str | None
Map the target onto an AR6 target (None if not available).
- Parameters:
target – The target as a row of a dataframe
- Returns:
The mapped AR6 target
- get_annual_reduction_rate(target: pandas.Series) float | None
Get the annual reduction rate (or None if not available). From version 1.5 the annual reduction rate is calculated as a compund annual reduction rate, CAR.
- Parameters:
target – The target as a row of a dataframe
- Returns:
The annual reduction
- get_regression(target: pandas.Series) Tuple[float | None, float | None]
Get the regression parameter and intercept from the model’s output.
- Parameters:
target – The target as a row of a dataframe
- Returns:
The regression parameter and intercept
- _merge_regression(data: pandas.DataFrame)
Merge the data with the regression parameters from the CDP-WWF Warming Function. :param data: The data to merge :return: The data set, amended with the regression parameters
- get_score(target: pandas.Series) Tuple[float, float]
Get the temperature score for a certain target based on the annual reduction rate and the regression parameters.
- Parameters:
target – The target as a row of a data frame
- Returns:
The temperature score
- aggregate_company_score(row: pandas.Series, company_data: pandas.DataFrame) Tuple[float, float, list]
Get the aggregated temperature score and a temperature result, which indicates how much of the score is based on the default score for a certain company based on the emissions of company.
- Parameters:
company_data – The original data, grouped by company, time frame and scope category
row – The row to calculate the temperature score for (if the scope of the row isn’t s1s2s3,
it will return the original score :return: The aggregated temperature score for a company
- get_default_score(target: pandas.Series) int
Get the temperature score for a certain target based on the annual reduction rate and the regression parameters.
- Parameters:
target – The target as a row of a dataframe
- Returns:
The temperature score
- _prepare_data(data: pandas.DataFrame)
Prepare the data such that it can be used to calculate the temperature score.
- Parameters:
data – The original data set as a pandas data frame
- Returns:
The extended data frame
- _calculate_company_score(data)
Calculate the combined s1s2s3 scores for all companies.
- Parameters:
data – The original data set as a pandas data frame
- Returns:
The data frame, with an updated s1s2s3 temperature score
- calculate(data: pandas.DataFrame | None = None, data_providers: List[TemperatureScore.calculate.data] | None = None, portfolio: List[ITR.interfaces.PortfolioCompany] | None = None)
Calculate the temperature for a dataframe of company data. The columns in the data frame should be a combination of IDataProviderTarget and IDataProviderCompany.
- Parameters:
data – The data set (or None if the data should be retrieved)
data_providers – A list of DataProvider instances. Optional, only required if data is empty.
portfolio – A list of PortfolioCompany models. Optional, only required if data is empty.
- Returns:
A data frame containing all relevant information for the targets and companies
- _get_aggregations(data: pandas.DataFrame, total_companies: int) Tuple[ITR.interfaces.Aggregation, pandas.Series, pandas.Series]
Get the aggregated score over a certain data set. Also calculate the (relative) contribution of each company
- Parameters:
data – A data set, containing one row per company
- Returns:
An aggregated score and the relative and absolute contribution of each company
- _get_score_aggregation(data: pandas.DataFrame, time_frame: ITR.interfaces.ETimeFrames, scope: ITR.interfaces.EScope) ITR.interfaces.ScoreAggregation | None
Get a score aggregation for a certain time frame and scope, for the data set as a whole and for the different groupings.
- Parameters:
data – The whole data set
time_frame – A time frame
scope – A scope
- Returns:
A score aggregation, containing the aggregations for the whole data set and each individual group
- aggregate_scores(data: pandas.DataFrame) ITR.interfaces.ScoreAggregations
Aggregate scores to create a portfolio score per time_frame (short, mid, long).
- Parameters:
data – The results of the calculate method
- Returns:
A weighted temperature score for the portfolio
- cap_scores(scores: pandas.DataFrame) pandas.DataFrame
Cap the temperature scores in the input data frame to a certain value, based on the scenario that’s being used. This can either be for the whole data set, or only for the top X contributors.
- Parameters:
scores – The data set with the temperature scores
- Returns:
The input data frame, with capped scores
- anonymize_data_dump(scores: pandas.DataFrame) pandas.DataFrame
Anonymize the scores by deleting the company IDs, ISIN and renaming the companies .
- Parameters:
scores – The data set with the temperature scores
- Returns:
The input data frame, anonymized
- _calculate_s1s2_score(data: pandas.DataFrame) pandas.DataFrame
Calculate the combined S1S2 score each combination of company_id, time_frame and scope. If it was possible på calculate individual S1 and S2 scores, then we calculate the aggregated S1S2 score.
- Parameters:
data – The data to calculate the S1S2 score for.
- Returns:
The S1S2 score.
- _aggregate_s3_score(data: pandas.DataFrame) pandas.DataFrame
Aggregate Scope 3 category scores into a single score per company and time frame.
Steps: 1) Calculate the mean temperature score for s3_category == CAT_15. 2) Remove original CAT_15 rows and append the mean CAT_15 score back to the data. 3) For each company and time frame: a) If GHG data is available for all categories, calculate a weighted average. b) If not, calculate a simple average of the scores. 4) Replace the original scores with the aggregated score.